Sains Malaysiana 53(11)(2024): 3721-3734

http://doi.org/10.17576/jsm-2024-5311-15

 

Highly Crystalline, Pure ZSM-5 from K2CO3-Treated Mud and Its Catalytic Activity in Biodiesel Production

(Tinggi Hablur, ZSM-5 Tulen daripada Lumpur DirawatK2CO3 dan Aktiviti Pemangkinnya dalam Pengeluaran Biodiesel)

 

HARTATI HARTATI1,*, QURROTA A’YUNI1, MEDYA AYUNDA FITRI2, ADIBA NAILA IZZAH1, MELINDA INTAN NOVITALINA1, PUTRI BINTANG DEA FIRDA1, TAZKIYATUN NUFUS1, DIDIK PRASETYOKO3, HARMAMI HARMAMI3, HASLIZA BAHRUJI4 & SHAHRUL NIZAM AHMAD5

 

1Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, UNAIR, Mulyorejo, Surabaya, 60115, Indonesia
2Department of Chemical Engineering, Nahdlatul Ulama University Sidoarjo, Sidoarjo, 61234, Indonesia
3Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
4Center for Advanced Material and Energy Science, Universiti Brunei Darussalam, Jl. Tungku Link, Gadong BE1410, Brunei
5School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

Diserahkan: 19 April 2024/Diterima: 27 September 2024

 

Abstract

Addressing the challenge of clean energy and waste management for sustainable development goals, ZSM-5 were synthesized from high-abundance volcano mud (VM) precursor and then utilized as catalyst in biodiesel production. Unlike conventional alkali treatment, we used the reflux method to extract the silica-alumina from the VM. K2CO3 alkali salt was utilized as the extractor, activator, and structure-directing agent. The synthesis was also performed using NaOH as a comparison. Various analytical techniques were employed including XRD, FTIR, SEM-EDX, TEM, N2 physisorption, and GC-MS to identify the effect of alkali types on the crystallization rate, morphology, and catalytic activity. Highly crystalline, pure ZSM-5 was successfully synthesized. It is found that K2CO3 facilitates a slow crystallization rate, requiring a minimum of 5 h of hydrothermal treatment to produce ZSM-5. Interestingly, slow crystallization led to homogeneous ZSM-5 particles with a narrow size distribution and a high mesoporous structure. In contrast, NaOH promoted a faster crystallization rate, producing inhomogeneous ZSM-5 particles size with a dominant microporosity. Two different feedstock qualities i.e., waste cooking oil (WCO) and oleic acid (OA) were used to assess the catalyst’s versatility. Among all zeolites synthesized using K2CO3, ZK6 exhibited the highest activity, with an 85.9% yield and 30% selectivity for FAME in WCO feedstock. In high-quality OA feedstock, ZK6 achieved significantly higher activity of 97.1% yield with 87.6% selectivity for FAME. ZNa6, the comparable sample synthesized with NaOH, achieved a 78.2% yield with 60.4% FAME selectivity in WCO feedstock. A higher catalytic activity of 97.5% yield with 100% selectivity towards FAME was achieved using high-purity OA feedstock.

 

Keywords: Biodiesel; K2CO3; waste cooking oil; ZSM-5

 

Abstrak

Menangani cabaran tenaga bersih dan pengurusan sisa untuk matlamat pembangunan mampan, ZSM-5 telah disintesis daripada prekursor lumpur gunung berapi (VM) yang memiliki kelimpahan tinggi dan kemudian digunakan sebagai pemangkin dalam pengeluaran biodiesel. Berbeza daripada proses rawatan alkali konvensional, kami menggunakan kaedah refluks untuk mengekstrak alumina silika dalam VM. Garam alkali K2CO3 digunakan sebagai pengekstrak, pengaktif, serta agen pengarah struktur. Sintesis juga dilakukan menggunakan NaOH sebagai perbandingan. Pelbagai teknik analisis digunakan contohnya, XRD, FTIR, SEM-EDX, TEM, N2 fisisorpsi dan GC-MS untuk mengenal pasti kesan jenis alkali ke atas kadar penghabluran, morfologi dan aktiviti pemangkin. ZSM-5 tulen yang sangat kristal telah berjaya disintesis. Didapati bahawa K2CO3 memudahkan kadar penghabluran yang perlahan, memerlukan sekurang-kurangnya 5 jam masa hidroterma untuk menghasilkan ZSM-5. Menariknya, penghabluran perlahan membawa kepada zarah ZSM-5 homogen dengan taburan saiz sempit dan struktur mesoporus yang lebih tinggi berbanding ZSM-5 yang disintesis dengan NaOH. Sebaliknya, NaOH memudahkan kadar penghabluran yang lebih tinggi, menghasilkan saiz zarah ZSM-5 yang tidak homogen dengan struktur mikroporous yang dominan. Dua kualiti bahan mentah yang berbeza iaitu sisa minyak masak (WCO) dan asid oleik (OA) digunakan untuk mengenal pasti kepelbagaian pemangkin. Didapati bahawa antara semua pemangkin yang disintesis dengan K2CO3, ZK6 menunjukkan prestasi tertinggi dengan hasil 85.9% dan selektiviti 30% kepada FAME dalam bahan suapan WCO. Manakala dalam bahan suapan OA, ZK6 menunjukkan 97.1% hasil dengan 87.6% selektiviti kepada FAME. ZNa6, sampel setandingnya mencapai hasil 78.2% dengan selektiviti FAME 60.4% dalam bahan suapan WCO. Aktiviti pemangkin yang lebih tinggi sebanyak 97.5% hasil dengan selektiviti 100% terhadap FAME dicapai menggunakan bahan suapan OA ketulenan tinggi.

 

Kata kunci: Biodiesel; K2CO3; sisa minyak masak; ZSM-5

 

RUJUKAN

Amalia Putri Purnamasari, Meyga Evi Ferama Sari, Desy Tri Kusumaningtyas, S. Suprapto, Abdul Hamid & Didik Prasetyoko. 2017. The effect of mesoporous H-ZSM-5 crystallinity as a CaO support on the transesterification of used cooking oil. Bulletin of Ch44emical Reaction Engineering & Catalysis 12(3): 329-336. https://doi.org/10.9767/bcrec.12.3.802.329-336

Araújo Silva, D.S., Castelblanco, W.N., Piva, D.H., de Macedo, V., Carvalho, K.T.G. & Urquieta-González, E.A. 2020. Tuning the Brønsted and Lewis acid nature in HZSM-5 Zeolites by the generation of intracrystalline mesoporosity - Catalytic behavior for the acylation of anisole. Molecular Catalysis 492: 111026. https://doi.org/10.1016/j.mcat. 2020.111026

Bilskie, J. 2001. Soil water status: Content and potential. Campbell Scientific 1784(435): 84321.

Bloom, N. & Van Reenen, J. 2013. Synthesis of zeolite ZSM-5, reaction mixture therefor and product thereof. NBER Working Papers.

Chanakaewsomboon, I., Tongurai, C., Photaworn, S., Kungsanant, S. & Nikhom, R. 2020. Investigation of saponification mechanisms in biodiesel production: Microscopic visualization of the effects of FFA, water and the amount of alkaline catalyst. Journal of Environmental Chemical Engineering 8(2): 103538. https://doi.org/10.1016/j.jece.2019.103538

Dai, W., Kouvatas, C., Tai, W., Wu, G., Guan, N., Li, L. & Valtchev, V. 2021. Platelike MFI crystals with controlled crystal faces aspect ratio. Journal of the American Chemical Society 143(4): 1993-2004. https://doi.org/10.1021/jacs.0c11784

Dang Nguyen Thoai, Pham Thi Le Hang & Dang Thi Lan. 2019. Pre‐treatment of waste cooking oil with high free fatty acids content for biodiesel production: An optimization study via response surface methodology. Vietnam Journal of Chemistry 57(5): 568-573.

Devaraj Naik, B. & Udayakumar, M. 2019. Optimization studies on esterification of waste cooking oil using sulfated montmorillonite clay acidic catalyst. Materials Today: Proceedings 46(Part 19): 9855-9861. https://doi.org/10.1016/j.matpr.2020.11.419

Diaz, I. & Mayoral, A. 2011. TEM studies of zeolites and ordered mesoporous materials. Micron 42(5): 512-527. https://doi.org/10.1016/j.micron.2010.12.005

Dorado, V., Herrerías, C.I. & Fraile, J.M. 2023. Catalytic hydrolysis of epoxyfatty esters with solid sulfonic acids. Molecular Catalysis 547: 113282. https://doi.org/10.1016/j.mcat.2023.113282

Gomes, G.J., Zalazar, M.F. & Arroyo, P.A. 2022. New insights into the effect of the zeolites framework topology on the esterification reactions: A comparative study from experiments and theoretical calculations. Topics in Catalysis 65(7-8): 871-886. https://doi.org/10.1007/s11244-022-01606-5

Grand, J., Awala, H. & Mintova, S. 2016. Mechanism of zeolites crystal growth: New findings and open questions. CrystEngComm 18(5): 650-664. https://doi.org/10.1039/c5ce02286j

Guldhe, A., Singh, P., Ansari, F.A., Singh, B. & Bux, F. 2017. Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel 187: 180-188. https://doi.org/10.1016/j.fuel.2016.09.053

Guo, Y., Delbari, S.A., Namini, A.S., Van Le, Q., Park, J.Y., Kim, D., Varma, R.S., Jang, H.W., T-Raissi, A., Shokouhimehr, M. & Li, C. 2023. Recent developments in solid acid catalysts for biodiesel production. Molecular Catalysis 547: 113362. https://doi.org/10.1016/j.mcat.2023.113362

Hadeer S. El Saey, Ahmed O. Abo EL Naga, Mohamed El Saied, Seham A. Shaban, Soha A. Abdel-Gawad & S.A. Salih. 2023. Kinetic and thermodynamic studies on the esterification of oleic acid ‏with methanol over sulfonated biochar catalyst derived from waste tea dregs. Biomass and Bioenergy 176: 106892. https://doi.org/10.1016/j.biombioe.2023.106892

Hartati, Wega Trisunaryanti, Rino Rakhmata Mukti, Ika Amalia Kartika, Putri Bintang Dea Firda, Satriyo Dibyo Sumbogo, Didik Prasetyoko & Hasliza Bahruji. 2020. Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. Journal of the Energy Institute 93(6): 2238-2246. https://doi.org/10.1016/j.joei.2020.06.006

Jonscher, C., Seifert, M., Kretzschmar, N., Marschall, M.S., Le Anh, M., Doert, T., Busse, O. & Weigand, J.J. 2022. Origin of morphology change and effect of crystallization time and Si/Al ratio during synthesis of zeolite ZSM-5. ChemCatChem 14(3): e202101248. https://doi.org/10.1002/cctc.202101248

Kowalska-Kuś, J., Held, A., Nowińska, K. & Góra-Marek, K. 2024. LTA zeolites as catalysts for transesterification of glycerol with dimethyl carbonate. Fuel 362: 130757. https://doi.org/10.1016/j.fuel.2023.130757

Kulkarni, S.B., Shiralkar, V.P., Kotasthane, A.N. & Borade, R.B. 1982. Studies in the synthesis of ZSM-5 zeolites. Zeolites 2(4): 313-318.

Lamnatou, C., Cristofari, C. & Chemisana, D. 2024. Renewable energy sources as a catalyst for energy transition: Technological innovations and an example of the energy transition in France. Renewable Energy 221: 119600. https://doi.org/10.1016/j.renene.2023.119600

Li, T., Krumeich, F., Chen, M., Ma, Z. & Van Bokhoven, J.A. 2020. Defining aluminum-zoning during synthesis of ZSM-5 zeolites. Physical Chemistry Chemical Physics 22(2): 734-739. https://doi.org/10.1039/c9cp05423e

Li, X., Han, S., Guan, D., Jiang, N., Xu, J. & Park, S.E. 2021. Rapid direct synthesis of nano-H-ZSM-5 from leached illite via solid-like-state conversion-based crystallization. Applied Clay Science 203: 106028. https://doi.org/10.1016/j.clay.2021.106028

Liu, C., Gu, W., Kong, D. & Guo, H. 2014. The significant effects of the alkali-metal cations on ZSM-5 zeolite synthesis: From mechanism to morphology. Microporous and Mesoporous Materials 183: 30-36. https://doi.org/10.1016/j.micromeso.2013.08.037

Lønstad Bleken, B-T., Mino, L., Giordanino, F., Beato, P., Svelle, S., Lillerud, K.P. & Bordiga, S. 2013. Probing the surface of nanosheet H-ZSM-5 with FTIR spectroscopy. Physical Chemistry Chemical Physics 15(32): 13363-13370. https://doi.org/10.1039/c3cp51280k

Mao, Y., Cheng, J., Guo, H., Shao, Y., Qian, L. & Yang, W. 2023. Sulfamic acid–modified zeolitic imidazolate framework (ZIF-90) with synergetic lewis and brønsted acid sites for microalgal biodiesel production. Fuel 331(P2): 125795. https://doi.org/10.1016/j.fuel.2022.125795

Md Sahabat Hossain, Md. Aftab Ali Shaikh, Md. Farid Ahmed & Samina Ahmed. 2023. Synthesis and characterization of nano-crystallite triple superphosphate from waste Pila globosa shells for sustainable industrial production. Materials Advances 4(10): 2384-2391. https://doi.org/10.1039/d3ma00102d

Medeiros Vicentini-Polette, C., Rodolfo Ramos, P., Bernardo Gonçalves, C. & Lopes De Oliveira, A. 2021. Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chemistry 12: 100166. https://doi.org/10.1016/j.fochx.2021.100166

Mosharof Hossain, Nuzhat Muntaha, Lipiar Khan Mohammad Osman Goni, Mohammad Shah Jamal, Mohammad Abdul Gafur, Dipa Islam & Abu Naieum Muhammad Fakhruddin. 2021. Triglyceride conversion of waste frying oil up to 98.46% using low concentration K+/CaO catalysts derived from eggshells. ACS Omega 6(51): 35679-35691. https://doi.org/10.1021/acsomega.1c05582

Modather F. Hussein, Ahmed O. Abo El Naga, Mohamed El Saied, Mahmoud M. AbuBaker, Seham A. Shaban & Fathy Y. El Kady. 2021. Potato peel waste-derived carbon-based solid acid for the esterification of oleic acid to biodiesel. Environmental Technology and Innovation 21: 101355. https://doi.org/10.1016/j.eti.2021.101355

Nermein Mostafa Marzouk, Ahmed O. Abo El Naga, Sherif A. Younis, Seham A. Shaban, Abdel Monem El Torgoman & Fathy Y. El Kady. 2021. Process optimization of biodiesel production via esterification of oleic acid using sulfonated hierarchical mesoporous ZSM-5 as an efficient heterogeneous catalyst. Journal of Environmental Chemical Engineering 9(2): 105035. https://doi.org/10.1016/j.jece.2021.105035

Novita Andarini, Tanti Haryati, Suwardiyanto Suwardiyanto & Yudi Aris Sulistiyo. 2022. Synthesis of zeolite Y from lapindo mud with the comparative variation of the weight of NaOH/Mud and molar SiO2/Al2O3. Indonesian Chimica Letters 1(1): 8-12. https://doi.org/10.19184/icl.v1i1.5

Pirzadi, Z. & Meshkani, F. 2022. From glycerol production to its value-added uses: A critical review. Fuel 329: 125044. https://doi.org/10.1016/j.fuel.2022.125044

Ponce, S., Gangotena, P.A., Anthony, C., Rodriguez, Y., Bazani, H.A.G., Keller, M.H., Souza, B.S., Vizuete, K., Debut, A. & Mora, J.R. 2024. Aluminum-based catalysts prepared in the presence of pectin for low-energy biodiesel production. Fuel 361: 130691. https://doi.org/10.1016/j.fuel.2023.130691

Praveena, V., Martin, L.J., Matijošius, J., Aloui, F., Pugazhendhi, A. & Varuvel, E.G. 2024. A systematic review on biofuel production and utilization from algae and waste feedstocks - A circular economy approach. Renewable and Sustainable Energy Reviews 192: 114178. https://doi.org/10.1016/j.rser.2023.114178

Prodinger, S., Berdiell, I.C., Cordero-Lanzac, T., Bygdnes, O.R., Solemsli, B.G., Kvande, K., Arstad, B., Beato, P., Olsbye, U. & Svelle, S. 2023. Cation-induced speciation of port-size during mordenite zeolite synthesis. Journal of Materials Chemistry A 11: 21884-21894.

Qurrota A’yuni, Ardhana Rahmayanti, Hartati Hartati, Purkan Purkan, Riki Subagyo, Nihayatur Rohmah, Luthfiyah Rifdah Itsnaini & Medya Ayunda Fitri. 2023. Synthesis and characterization of silica gel from lapindo volcanic mud with ethanol as a cosolvent for desiccant applications. RSC Advances 13(4): 2692-2699. https://doi.org/10.1039/d2ra07891k

Reber, M.J. & Brühwiler, D. 2015. Bimodal mesoporous silica with bottleneck pores. Dalton Transactions 44(41): 17960-17967. https://doi.org/10.1039/c5dt03082j

Rezayan, A. & Taghizadeh, M. 2018. Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel production: Process optimization and kinetics study. Process Safety and Environmental Protection 117: 711-721. https://doi.org/10.1016/j.psep.2018.06.020

Ribeiro, F.C.P., Santos, J.L., Araujo, R.O., Santos, V.O., Chaar, J.S., Tenório, J.A.S. & de Souza, L.K.C. 2024. Sustainable catalysts for esterification: Sulfonated carbon spheres from biomass waste using hydrothermal carbonization. Renewable Energy 220: 119653. https://doi.org/10.1016/j.renene.2023.119653

Sathish Kumar, R.K, Sasikumar, R. & Dhilipkumar, T. 2024. Generation, bio-composite production, and environmental considerations. Journal of Cleaner Production 435: 140536. https://doi.org/10.1016/j.jclepro.2023.140536

Schulze-Makuch, D., Haque, S., Beckles, D., Schmitt-Kopplin, P., Harir, M., Schneider, B., Stumpp, C. & Wagner, D. 2020. A chemical and microbial characterization of selected mud volcanoes in trinidad reveals pathogens introduced by surface water and rain water. Science of the Total Environment 707: 136087. https://doi.org/10.1016/j.scitotenv.2019.136087

Rajasree Shanmuganathan, N.D. Nguyen, Mysoon M. Al-Ansari, Ezhaveni Sathiyamoorthi, Jintae Lee & S.D. Priya. 2024. Identification of suitable catalyst among HZSM-5, HY and γ-Al2O3 to obtain upgraded pyrolysis oil with augmented liquid oil yield. Environmental Research 260: 119587. https://doi.org/10.1016/j.envres.2024.119587

Su, C-H. 2013. Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production. Applied Energy 104: 503-509. https://doi.org/10.1016/j.apenergy.2012.11.026

Thommes, M. 2010. Physical adsorption characterization of nanoporous materials. Chemie-Ingenieur-Technik 82(7): 1059-1073. https://doi.org/10.1002/cite.201000064

Trisunaryanti, W., Triyono, Paramesti, C., Larasati, S., Santoso, N.R. & Fatmawati, D.A. 2020. Synthesis and characterization of Ni/NH2/mesoporous silica catalyst from lapindo mud for hydrocracking of waste cooking oil into biofuel. RASAYAN Journal of Chemistry 13(3): 1386-1393.

Van Poecke, A., Tabari, H. & Hellinckx, P. 2024. Unveiling the backbone of the renewable energy forecasting process: Exploring direct and indirect methods and their applications. Energy Reports 11: 544-557. https://doi.org/10.1016/j.egyr.2023.12.031

Wan Nur Aifa Wan Azahar, Mastura Bujang, Ramadhansyah Putra Jaya, Mohd Rosli Hainin, Azman Mohamed, Norzita Ngadi & Dewi Sri Jayanti. 2016. The potential of waste cooking oil as bio-asphalt for alternative binder - An overview. Jurnal Teknologi 78(4): 111-116. https://doi.org/10.11113/jt.v78.8007

Wang, H., Shen, B., Chen, X., Xiong, H., Wang, H., Song, W., Cui, C., Wei, F. & Qian, W. 2022. Modulating inherent lewis acidity at the intergrowth interface of mortise-tenon zeolite catalyst. Nature Communications 13: 2924. https://doi.org/10.1038/s41467-022-30538-7

Wang, Z., Jiang, X., Pan, M. & Shi, Y. 2020. Nano-scale pore structure and its multi-fractal characteristics of tight sandstone by N2 adsorption/desorption analyses: A case study of shihezi formation from the sulige gas filed, Ordos Basin, China. Minerals 10(4): 377. https://doi.org/10.3390/min10040377

Weckhuysen, B.M. & Wachs, I.E. 2001. Catalysis by supported metal oxides. In Handbook of Surfaces and Interfaces of Materials, Vol. 1., edited by Nalwa, H.S. Massachusetts: Academic Press. pp. 613-648.

Wu, Q., Shu, Q., Guo, W. & Xing, X. 2024. Preparation of Brönsted-Lewis dual acidic catalyst Ce-HPW-F and its simultaneous catalytic esterification and transesterification of oleic acid and castor oil with methanol to synthesize biodiesel. Fuel 361: 130668. https://doi.org/10.1016/j.fuel.2023.130668

Xu, L., Zhang, J., Ding, J., Liu, T., Shi, G., Li, X., Dang, W., Cheng, Y. & Guo, R. 2020. Pore structure and fractal characteristics of different shale lithofacies in the dalong formation in the western area of the lower Yangtze platform. Minerals 10(1): 72. https://doi.org/10.3390/min10010072

Yadav, N., Yadav, G. & Ahmaruzzaman, M. 2023. Fabrication of surface-modified dual waste-derived biochar for biodiesel production by microwave-assisted esterification of oleic acid: Optimization, kinetics, and mechanistic studies. Renewable Energy 218: 119308. https://doi.org/10.1016/j.renene.2023.119308

Yang, J., Cong, W.J., Zhu, Z., Miao, Z-D., Wang, Y.T., Nelles, M. & Fang, Z. 2023. Microwave-assisted one-step production of biodiesel from waste cooking oil by magnetic bifunctional SrOZnO/MOF catalyst. Journal of Cleaner Production 395: 136182. https://doi.org/10.1016/j.jclepro.2023.136182

Ye, H., Shi, J., Wu, Y., Yuan, Y., Gan, L., Wu, Y., Xie, H., Pugazhendhi, A. & Xia, C. 2024. Research progress of nano-catalysts in the catalytic conversion of biomass to biofuels: Synthesis and application. Fuel 356: 129594. https://doi.org/10.1016/j.fuel.2023.129594

Zhang, P., Li, S. & Zhang, C. 2019. Solvent-free synthesis of nano-cancrinite from rice husk ash. Biomass Conversion and Biorefinery 9(3): 641-649. https://doi.org/10.1007/s13399-019-00375-8

Zhang, Q., Zhang, Y., Deng, T., Wei, F., Jin, J. & Ma, P. 2019. Sustainable production of biodiesel over heterogeneous acid catalysts. In Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals, edited by Saravanamurugan, S., Pandey, A., Li, H. & Riisager, A. Elsevier. https://doi.org/10.1016/B978-0-444-64307-0.00016-0

 

*Pengarang untuk surat-menyurat; email: hartati@fst.unair.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya